One of the points made in the modeling article was that often teachers ask their students to recreate models that already exist. For example, they might ask students to "posterize" or draw something that they have already seen in their textbooks, which doesn't always promote learning as it involves little problem solving or personal connection. I felt this happened in nearly all of my biology classes- I was asked to draw animal cells and plant cells on posters starting in fifth grade and again in sixth grade, ninth grade, and eleventh grade. Somehow, I managed to forget almost all of that information by the time I was in college level Biology, probably because I had never asked useful questions about cells, such as "how does a cell maintain its shape?" or "what allows organelles to travel within cells, and how can that be modeled?" Overall, what I learned from this section of the article was that engaging in the modeling process involves much more than simple representation and extends further into problem solving and constant revision with the introduction of new evidence.
The article reminded me that modeling is used extensively by scientists and researchers but can often seem foreign to teachers and students. Therefore, it is especially important that we as aspiring educators learn as much as possible, and that includes studying effective modeling practices already conducted by teachers. Carolyn's sound waves unit, which took place over the course of 11 days, showed me just how much dedication she had as a teacher. She engaged the students in modeling, and then had them perform activities and engage in debate with one another about their models- all components of an ideal ADI.
An idea in the video that seems important to me as a future educator was that students as early as first grade can begin to grasp data distributions and statistics, which are often regarded with dread by students in high school and even college. The instructor's students were able to model data of plant growth, and were asked to describe how "spread out" the data were, an interesting and effective method of introducing the concepts of variance and standard deviance without introducing the confusing vocabulary!
The video was effective in giving great examples for a biology classroom, such as creating "sustainable" ecosystems in pickle jars. It also gave me more confidence in starting large projects with students with the faith that they will catch on and produce ideas of their own using their own intuition and creativity. In other words, the teacher's job is not to create models for students or to ask them to re-create existing models, but rather to guide them and ask them important questions that can be investigated, debated, and revised through the PROCESS of modeling.
No comments:
Post a Comment