Sunday, April 10, 2016

John Skinner -- Harlow Response

One theme that stood out to me from the reading was the need for teachers to tap into prior knowledge in order to deepen students' understanding about course content and model construction. According to educational psychology, relating new content to a student's prior knowledge base can help them more readily integrate new material into existing mental schema. Thus, it will be useful to "figur[e] out how to use students' ideas to actually inform instruction" (p. 1118). The authors mention that student creativity can play a crucial role in model construction, given that often times, students may have the correct thinking about scientific processes without knowing the exact scientific terminology associated with it. By working with student's base models and adding scientific vocabulary and concepts to their creations, it allows students to take a more active role in methods of investigation and inquiry that are emphasized in the new NGSS standards. These investigations, followed by rounds of discussion and model revision, can help debunk the idea that a teacher's role is to provide students with correct answers without first letting them explore a scientific problem.

Another common theme that we have seen throughout the course is the explicit teaching of LAL, or learning about learning, to our students. The authors emphasize that by requiring students to think about the process of modeling, rather than just the concept that they are attempting to model, students metacognitive abilities can be scaffolded in the classroom. We have seen this idea of metacognition in model construction built into various computational modeling programs that we have read about, including "Betty's Brain" in VanLehn. By asking students to engage in various epistemic games (Hestenes) before beginning to construct a model, we can help our students analyze the accuracy, the behavioral mechanisms, and the essential components of an effective model.

In terms of learning to model as a class, the authors bring up a relevant point about teaching potential teachers about alternative pedagogical resources before they enter the work force. I find that a lot of our class work has encouraged us to directly engage in the processes we are learning to implement in science classrooms; instead of learning about these resources through formal study, we are learning about them through our own active participation in modeling strategies.

2 comments:

  1. Your last point is the imperative step I think that was missing for Harlow's undergraduate participants: that we are actually engaging in modeling ourselves. This is a new shift in science education, one that most if not all of us did not experience in our own education in K-12 grade. Therefore, to be able to teach modeling in a useful manner it can only help to have firsthand experience with knowing the ins and outs and struggles of creating a computational model.

    ReplyDelete
  2. This comment has been removed by the author.

    ReplyDelete