Monday, April 18, 2016

I think the ambitious science teaching article did a good job of pointing out the potential pitfalls of implementing models in a science classroom. One of the things the authors mentioned was the importance of having students create and improve their models on their own, as opposed to simply reproducing images or diagrams from a textbook. As mentioned before, this takes a good deal of preparation from the teacher. In this case, not only would the teacher have to prepare for the lesson itself, but would also have to prepare ways to guide and lead the students in the right direction. Furthermore, teachers intent on implementing scientific modeling will also have to prepare students with the skills necessary to design their own models.

I also liked what the article said about observable/unobservable features. Because so much of chemistry occurs at the atomic scale, I sometimes have trouble imagining how I would create a model for some of the more nebulous concepts (such as Gibbs' free energy). Hopefully by encouraging students to think about and model unobservable parts of a chemical reaction along with the observable parts, I can better prepare students to think about and understand the microscopic qualities involved in a chemical reaction.

I also thought the idea of "model saturation" was interesting and something that we haven't discussed in depth. Honestly, I'm pretty relieved that teachers say it might be a good idea to do models only once or twice per unit, and that some units might be better taught without long and engaged models, as preparation of modeling activities seems like no small task. However, this does bring up the question of what teaching methods should one use to fill up the remainder of the time and what is the best way to implement those methods.

No comments:

Post a Comment